ArrayFire Capability Update - July 2014

Oded Android, ArrayFire, C/C++, CUDA, Fortran, JAVA, OpenCL, R 1 Comment

In response to user requests for additional ArrayFire capabilities, we have decided to extend the library to have CPU fall back when OpenCL drivers for CPUs are not available. This means that ArrayFire code will be portable to both devices that have OpenCL setup and devices without it. This is done through the creation of additional backends. This will allow ArrayFire users to write their code once and have it run on multiple systems. We currently support the following systems and architectures: NVIDIA GPUs (Tesla, Fermi, and Kepler) AMD's GPUs, CPUs and APUs Intel's CPUs, GPUs and Xeon Phi Co-Processor Mobile and Embedded devices As part of this update process we are also looking at extending ArrayFire capabilities to low power systems such ...

clMath: An Open Source BLAS and FFT Library for OpenCL

Scott Announcements, OpenCL Leave a Comment

If you're reading our blog, BLAS and FFT libraries likely form an important basis for your work. For instance, BLAS and FFT libraries are used in some of ArrayFire's higher-level functions for linear algebra, signal processing, and image processing. Today, OpenCL is getting a big boost in BLAS and FFT library availability. AMD has announced a bold and generous move to contribute back to the OpenCL community by open sourcing its APPML BLAS and FFT OpenCL libraries. At AccelerEyes, we have used AMD's OpenCL libraries in the past within our higher-level ArrayFire library. These libraries are the best BLAS and FFT OpenCL libraries available anywhere. We are thrilled to now join AMD and the open source community in maintaining and improving these ...