This is the seventh in a series of posts looking at our current ArrayFire examples. The code can be compiled and run from arrayfire/examples/ when you download and install the ArrayFire library. Today we will discuss the examples found in the pde/ directory. In these examples, my machine has the following configuration: ArrayFire v1.9.1 (build XXXXXXX) by AccelerEyes (64-bit Linux) License: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CUDA toolkit 5.0, driver 319.17 GPU0 Tesla K20c, 5120 MB, Compute 3.5 (current) GPU1 Tesla C2075, 6144 MB, Compute 2.0 GPU2 Tesla C1060, 4096 MB, Compute 1.3 Display Device: GPU0 Tesla K20c Memory Usage: 5044 MB free (5120 MB total) The followings are the examples of formulating Partial Differential Equations, generally used to create a relevant computer model with several variables. In these examples, …
ArrayFire Examples (Part 6 of 8) – Multiple GPUs
This is the sixth in a series of posts looking at our current ArrayFire examples. The code can be compiled and run from arrayfire/examples/ when you download and install the ArrayFire library. Today we will discuss the examples found in the multi_gpu/ directory. In these examples, my machine has the following configuration: ArrayFire v1.9.1 (build XXXXXXX) by AccelerEyes (64-bit Linux) License: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CUDA toolkit 5.0, driver 319.17 GPU0 Tesla K20c, 5120 MB, Compute 3.5 (current) GPU1 Tesla C2075, 6144 MB, Compute 2.0 GPU2 Tesla C1060, 4096 MB, Compute 1.3 Memory Usage: 4935 MB free (5120 MB total) *The following order represents the speed of GPUs in my machine from fastest to slowest: K20c, C2070, C1060. ArrayFire is capable of multi-GPU management. This capability becomes useful for benchmarking …
ArrayFire Examples (Part 5 of 8) – Machine Learning
This is the fifth in a series of posts looking at our current ArrayFire examples. The code can be compiled and run from arrayfire/examples/ when you download and install the ArrayFire library. Today we will discuss the examples found in the machine_learning/ directory. In these examples, my machine has the following configuration: ArrayFire v1.9 (build XXXXXXX) by AccelerEyes (64-bit Mac OSX) License: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CUDA toolkit 5.0, driver 304.54 GPU0 GeForce GT 560M, 1024 MB, Compute 3.0 (single,double) Display Device: GPU0 GeForce GT 650M Memory Usage: 245 MB free (1024 MB total)… 1. K-Means Clustering – kmeans.cpp Figure 1 This is an example of K-Means Clustering Algorithm. K-Means Clustering Algorithm is a data mining technique that partitions the given data into groups by their similarities. All you need to …
Solution to NVIDIA Toolkit Installation Error for Ubuntu 12.10 [Driver: Installation Failed]
Driver: Installation Failed You may find this error message while trying to set up the NVIDIA CUDA Toolkit in Ubuntu. I found it when I was installing the toolkit for ArrayFire [1] CUDA Toolkit Installation 1. Download the CUDA Toolkit in the link. 2. Extract the .run file in a location sudo sh cuda_5.0.35_linux_64_ubuntu11.10-1.run –extract <location> 3. Exit the X server (press Ctrl+Alt+F1) and stop the display manager by the following command. sudo stop lightdm 4. cd to the location and now there are run files named samples*, devdriver* and cudatoolkit*. 5. Install devdriver (*only if NVIDIA Driver is not installed) sudo sh devdriver_5.0_linux_64_304.54.run 6. Install cudatoolkit sudo sh cudatoolkit-5.0.35_linux_64_ubuntu11.10.run In the end, when it asks …
ArrayFire Examples (Part 4 of 8) – Image Processing
This is the fourth in a series of posts looking at our current ArrayFire examples. The code can be compiled and run from arrayfire/examples/ when you download and install the ArrayFire library. Today we will discuss the examples found in the image_processing/ directory. In these examples, my machine has the following configuration: ArrayFire v1.9 (build XXXXXXX) by AccelerEyes (64-bit Windows) License: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CUDA toolkit 5.0, driver 306.94 GPU0 GeForce GT 650M, 2048 MB, Compute 3.0 (single,double) Display Device: GPU0 GeForce GT 650M Memory Usage: 1981 MB free (2048 MB total)… Image Demo The purpose of this example is to show how to do some common image manipulations. The method channel_split shows how easily multi-dimensional arrays can be subdivided: // Split a MxNx3 image into 3 separate channel …
Life at AccelerEyes
Here’s an account of life at AccelerEyes from Vish, the first full-time employee at the company. Over the past 3 months, our company has doubled in size and Vish recently wrote the following to the new employees. We share here on the blog too to give a peek into our culture. If you are a great GPU programmer, you might be interested in joining our team too. — Hello Everyone, When I joined in early 2009, AccelerEyes was barely occupying a full cubicle. “Could this be a company?”, was my first thought. And yet, here we are, growing in size, reputation, and revenue! I will always cherish those early days for the complete uncertainty as to the future – both mine and …
ArrayFire Examples (Part 3 of 8) – Financial
This is the third in a series of posts looking at our current ArrayFire examples. The code can be compiled and run from arrayfire/examples/ when you download and install the ArrayFire library. Today we will discuss the examples found in the financial/ directory. In these examples, my machine has the following configuration: ArrayFire v1.9 (build XXXXXXX) by AccelerEyes (64-bit Linux) License: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CUDA toolkit 5.0, driver 304.54 GPU0 Quadro 6000, 6144 MB, Compute 2.0 (single,double) Display Device: GPU0 Quadro 6000 Memory Usage: 5549 MB free (6144 MB total)… Black-Scholes There are a number of applications of ArrayFire and GPU programming in the world of finance and markets. Here we have an example of Black-Scholes, which is a model for computing options prices in the stock market. Understanding …
Giddy for GTC – We’re Taking it to the Next Level
GTC is quickly approaching and AccelerEyes is giddy with excitement! This year we are taking things to the next level as a Silver Sponsor at GTC 2013. Meaning, you’ll be seeing a lot more of us throughout the conference! Schedule a Meeting with Us Do you want to meet with us personally? Schedule a time to sit down with AccelerEyes engineers and account representatives using our online scheduler. Visit our Booth If you’re attending GTC, be sure to come visit us at booth #204 to see some great demos or to chat with anyone in our Software Shop for CUDA & OpenCL. Come see how ArrayFire complements other GPU development efforts, including raw CUDA/OpenCL development, OpenACC, and other GPU libraries. Register …
ArrayFire Examples (Part 2 of 8) – Benchmarks
This is the second in a series of posts looking at our current ArrayFire examples. The code can be compiled and run from arrayfire/examples/ when you download and install the ArrayFire library. Today we will discuss the examples found in the benchmarks/ directory. In these examples, my machine has the following configuration: ArrayFire v1.9 (build XXXXXXX) by AccelerEyes (64-bit Linux) License: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CUDA toolkit 5.0, driver 304.54 GPU0 Quadro 6000, 6144 MB, Compute 2.0 (single,double) Display Device: GPU0 Quadro 6000 Memory Usage: 5549 MB free (6144 MB total)… Blas This example shows a simple bench-marking process using ArrayFire’s matrix multiply routine. For more information on Blas, click here. The data measured in this example is the Giga-Flop (GFLOP Floating Point Operations Per Second). I got the following results using …
ArrayFire Examples (Part 1 of 8) – Getting Started
This is the first in a series of posts looking at our current ArrayFire examples. The code can be compiled and run from arrayfire/examples/ when you download and install the ArrayFire library. Today we will discuss the examples found in the getting_started/ directory. Hello World Of course we start with the classic “Hello World” example, which walks you through the basics of using the ArrayFire library. Running this example will print out system and device information, as well as perform some basic matrix operations. This is a good place to get familiar with the basic data container for ArrayFire – the array. ArrayFire v1.9 (build XXXXXXX) by AccelerEyes (64-bit Linux) License: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CUDA toolkit 5.0, driver 304.54 GPU0 Quadro 6000, 6144 …