Researchers at the Stanford Artificial Intelligence Laboratory (SAIL) have had more success (building on previous work) using Jacket to speed up their algorithm. In a paper at this year’s CVPR 2011, entitled “Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis”, they explain how their unsupervised feature learning algorithm competes with other algorithms that are hand crafted or use learned features. KTH Hollywood2 UCF Youtube Best published Results 92.1% 50.9% 85.6% 71.2% Stanford group Results 93.9% 53.3% 86.5% 75.8% Testing their algorithm on four well-known benchmark datasets, they were able to achieve better performance than existing results that have been published so far. For their training purposes, they used a multi-layered stacked convolutional ISA (Independent subspace analysis) …