Visualizing a Trained Neural Network

John Melonakos ArrayFire, Case Studies Leave a Comment

Researchers from the University Bordeaux credit ArrayFire in a paper published in ICPR 2020’s workshop on Explainable Deep Learning for AI. The paper is titled “Samples Classification Analysis Across DNN Layers with Fractal Curves.” It provides a tool for visualizing where the deep neural network starts to be able to discriminate the classes. Summary Deep neural networks (DNN) are becoming the prominent solution when using machine learning models. However, they suffer from a black-box effect that complicates their inner-workings interpretation and thus the understanding of their successes and failures. Information visualization is one way, among others, to help in their interpretability and hypothesis deduction. This paper presents a novel way to visualize atrained DNN to depict at the same time its architecture …

An Exact and Fast Computation of the Discrete Fourier Transform for Polar and Spherical Grid

John Melonakos ArrayFire, Case Studies Leave a Comment

Researchers from the University of Central Florida credit ArrayFire in a paper published in IEEE Transactions on Signal Processing. The paper is titled “An Exact and Fast Computation of Discrete Fourier Transform for Polar and Spherical Grid” and provides the first exact and fast solution to the problem of obtaining discrete Fourier transform for polar and spherical grids. This paper is fully reproducible on Github. Summary Numerous applied problems of two-dimensional (2-D) and 3-D imaging are formulated in the continuous domain. They emphasize obtaining and manipulating the Fourier transform in polar and spherical coordinates. However, translating continuum ideas with discretely sampled data on a Cartesian grid is problematic. There exists no exact and fast solution to the problem of obtaining discrete Fourier …

Accelerated NSGA-2 for Multi-Objective Optimization Problems

John Melonakos ArrayFire, Case Studies Leave a Comment

Researchers from the Catalan Telecommunications Technology Centre in Spain credit ArrayFire in a paper published in the Applied Soft Computing Journal. The paper is titled “A GPU fully vectorized approach to accelerate performance of NSGA-2 based on stochastic non-domination sorting and grid-crowding” and showcases ArrayFire accelerating decision space exploration for multi-objective optimization problems. Summary This work introduces an accelerated implementation of NSGA-2 on a graphics processing unit (GPU) to reduce execution time. Parallelism is achieved at the population level using vectorization. All the algorithm components are run on the device, minimizing communication overhead. New stochastic versions of both non-domination sorting and crowding are introduced in the article. They are designed to be efficiently vectorized on GPU; therefore, the proposed approach is finally …

Topology Optimization with Accessibility Constraint for Multi-Axis Machining

John Melonakos Case Studies, Computer Vision Leave a Comment

Researchers from the Palo Alto Research Center (PARC) credit ArrayFire in a paper published in the Journal of Computer-Aided Design. The paper is titled “Topology Optimization with Accessibility Constraint for Multi-Axis Machining” and showcases ArrayFire accelerating the workload. Summary In this post, a topology optimization (TO) framework is presented to enable the automated design of mechanical components while ensuring the result can be manufactured using multi-axis machining. Although TO improves the part’s performance, the as-designed model is often geometrically too complex to be machined, and the as-manufactured model can significantly vary due to machining constraints that are not accounted for during TO. In other words, many of the optimized design features cannot be accessed by a machine tool without colliding with the …

Autonomous Air Refueling Path Planning for UAVs with ArrayFire

John Melonakos Case Studies Leave a Comment

Researchers from the Aeronautics and Space Technologies Institute of the Turkish Air Force Academy credit ArrayFire in a paper published in the Journal of Intelligent & Robotic Systems. The paper is titled “Sigmoid Limiting Functions and Potential Field Based Autonomous Air Refueling Path Planning for UAVs” and showcases ArrayFire in a real-time application of UAV path planning. Summary This paper builds on previous approaches for autonomous air-refueling (AAR) path planning for Unmanned Aerial Vehicles (UAVs). Deficiencies from previous approaches, like smooth maneuvers in the tanker approach and the boundary functions of the potential zones, have been handled. Furthermore, special pattern parameters are added to the approach which makes it suitable for different kind of UAVs that has variable flight speed and turn …

Classification of Topological Discrepancies in 3D Printing with ArrayFire

John Melonakos Case Studies Leave a Comment

Researchers from the Palo Alto Research Center in California credit ArrayFire in a paper published in the Journal of Computer-Aided Design. The paper is titled “A Classification of Topological Discrepancies in Additive Manufacturing” and showcases a novel approach for classification of local shape deviations in topological terms than can be used to improve 3D printing processes. The OpenCL version of ArrayFire on an NVIDIA GTX 1080 GPU was used for FFT-based convolutions and superlevel set operations. A design’s manufacturability via an additive manufacturing (AM) process is largely determined by the AM machine’s ability to print the shape within ‘acceptable limits’. The notion of geometric dimensioning and tolerancing has been used successfully to define and check these limits for conventionally manufactured …

Call for ArrayFire User Stories

John Melonakos Announcements, Case Studies Leave a Comment

There’s a sweet ArrayFire T-Shirt for anyone that submits a write-up of your success with the ArrayFire library. We’ve been working on a new website for our community, and we’d love to hear what you’re doing with the library. Also, your stories are important to the ArrayFire open source project in that we share them with project funders to motivate their continued investment in our community and library development. Please take some time to help us by sharing your success. We recognize that most people are not constantly focused on performance improvement. Most of you have ArrayFire in your toolbelt to accelerate code when your application demands excellent performance. If you have found it helpful in a project, please consider …

Improved Interpretation of Pneumonia Malformation in Chest X-Rays with ArrayFire

John Melonakos Case Studies Leave a Comment

Researchers from the University of Calcutta in India credit ArrayFire in a paper published in the Applied Soft Computing Journal. The paper is titled “Chest X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster–Shafer theory of evidence” and showcases an algorithm that is qualitatively and quantitatively improved in both accuracy and execution time over other common methods used in X-ray enhancement. Research Summary The details of the algorithm development are described in the paper. Figure 1 below shows the basic structure of the algorithm: the separate processing of the original image and its complement, the use of fussy soft sets, the use of Dempster-Shafer theory, and the ultimate creation of the enhanced image. The results of …

Fast Atom Rearrangement in Optical Tweezer Traps

Woojun Lee ArrayFire, Case Studies Leave a Comment

“With ArrayFire, we got the best performance of the software for our needs, breaking the limit of a challenging experiment in atomic physics. We also simply saved a lot of time so that we can further develop our research.” -Woojun Lee, Korea Advanced Institute of Science and Technology (KAIST) A quantum computer is very different than a conventional computer. It utilizes the quantum mechanical properties of matter. It is thought to have the potential to far outperform conventional computers in certain types of computations. One way to realize a quantum computer is to trap many single atoms in a vacuum chamber and control them with modulated lights. As the number of atoms gets larger, controlling them also requires more and more computational …

High-energy Laser-pulse Self-compression in Short Gas-filled Fibers

Tucker Yazdani ArrayFire, Case Studies Leave a Comment

Researchers in physics and physical chemistry from the University of Southampton credit ArrayFire in a scientific report for its help in drastically reducing computation time of linear algebra, vectored mathematical operations, and fast Fourier transforms (FFT). The report examines high-energy laser pulse self-compression in short gas-filled fibers. Research Abstract From the article in Physical Review, the following abstract summarizes the research: We examine the spatio-temporal compression of energetic femtosecond laser pules within short gas-filled fibers. The study is undertaken using an advanced nonlinear pulse propagation model based on a multimode generalized nonlinear Schr ̈odinger equation that has been modified to include plasma effects. Plasma defocusing and linear propagation effects are shown to be the dominant processes within a highly dynamical …