Researchers from the University of Calcutta in India credit ArrayFire in a paper published in the Applied Soft Computing Journal. The paper is titled “Chest X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster–Shafer theory of evidence” and showcases an algorithm that is qualitatively and quantitatively improved in both accuracy and execution time over other common methods used in X-ray enhancement. Research Summary The details of the algorithm development are described in the paper. Figure 1 below shows the basic structure of the algorithm: the separate processing of the original image and its complement, the use of fussy soft sets, the use of Dempster-Shafer theory, and the ultimate creation of the enhanced image. The results of …
Fast Atom Rearrangement in Optical Tweezer Traps
“With ArrayFire, we got the best performance of the software for our needs, breaking the limit of a challenging experiment in atomic physics. We also simply saved a lot of time so that we can further develop our research.” -Woojun Lee, Korea Advanced Institute of Science and Technology (KAIST) A quantum computer is very different than a conventional computer. It utilizes the quantum mechanical properties of matter. It is thought to have the potential to far outperform conventional computers in certain types of computations. One way to realize a quantum computer is to trap many single atoms in a vacuum chamber and control them with modulated lights. As the number of atoms gets larger, controlling them also requires more and more computational …
High-energy Laser-pulse Self-compression in Short Gas-filled Fibers
Researchers in physics and physical chemistry from the University of Southampton credit ArrayFire in a scientific report for its help in drastically reducing computation time of linear algebra, vectored mathematical operations, and fast Fourier transforms (FFT). The report examines high-energy laser pulse self-compression in short gas-filled fibers. Research Abstract From the article in Physical Review, the following abstract summarizes the research: We examine the spatio-temporal compression of energetic femtosecond laser pules within short gas-filled fibers. The study is undertaken using an advanced nonlinear pulse propagation model based on a multimode generalized nonlinear Schr ̈odinger equation that has been modified to include plasma effects. Plasma defocusing and linear propagation effects are shown to be the dominant processes within a highly dynamical …
Real-time Quantitative Phase Imaging of Red Blood Cells with ArrayFire
Researchers from the College of Optical Science and Engineering of Zhejiang University and the Department of Ophthalmology of Stanford University published a scientific report using ArrayFire to perform quantitative phase imaging in real-time with example results tracking red blood cell dynamics. Research Abstract From the article in Nature, the following abstract summarizes the research: Real-time quantitative phase imaging has tremendous potential in investigating live biological specimens in vitro. Here we report on a wideband sensitivity-enhanced interferometric microscopy for quantitative phase imaging in real-time by employing two quadriwave lateral shearing interferometers based on randomly encoded hybrid gratings with different lateral shears. A theoretical framework to analyze the measurement sensitivity is firstly proposed, from which the optimal lateral shear pair for sensitivity …
Identifying Defects in Bragg Coherent Diffractive Imaging with ArrayFire
Researchers from the Materials Science Division of Argonne National Laboratory published a scientific report using ArrayFire to identify defects in Bragg coherent diffractive imaging (BCDI). From the article in Nature, the following abstract summarizes the research: Crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. BCDI has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, numerical simulations are used …
Transcranial High-Intensity Focused Ultrasound Therapies with ArrayFire
Researchers from the University of Utah recently used ArrayFire to publish results on a full-wave phase aberration correction method for transcranial high-intensity ultrasound therapies. From the Journal of Therapeutic Ultrasound, the following abstract summarizes the research: Background Non-invasive high-intensity focused ultrasound (HIFU) can be used to treat a variety of disorders, including those in the brain. However, the differences in acoustic properties between the skull and the surrounding soft tissue cause aberrations in the path of the ultrasonic beam, hindering or preventing treatment. Methods The paper presents a method for correcting these aberrations that is fast, full-wave, and allows for corrections at multiple treatment locations. The method is simulation-based: an acoustic model is built based on high-resolution CT scans, and …
Dissipative Dynamics at Conical Intersections
Researchers from Nanyang Technological University in Singapore presented results from simulations achieved with ArrayFire in the Faraday Discussions journal of The Royal Society of Chemistry. The simulations model the effects of a dissipative environment on the ultrafast vibronic couplings at conical intersections. In this post, we first define these terms to gain understanding. Subsequently, we provide a summary of this research and the utility provided by ArrayFire in the simulation framework. Defining Terms Dissipative Environment (ref1, ref2) A dissipative system is a thermodynamically open system that is operating out of, and often far from, thermodynamic equilibrium in an environment with which it exchanges energy and matter. A tornado may be thought of as a dissipative system. Dissipative systems stand in …
Dynamical Properties of a Nonlinear Growth Equation with ArrayFire
Researchers at the Université de Picardie Jules Verne in France and the University of Miskolc in Hungary use ArrayFire in the analysis and study of the dynamical properties of a nonlinear growth equation, as described in this paper. Oftentimes, technical computing problems are simply intractable on CPUs and bigger devices like GPUs are required in order to get the job done. In this case, ArrayFire was an easy-to-use option for these researchers to build and analyze math quickly and efficiently on the GPU. From their abstract: “The conserved Kuramoto-Sivashinsky equation is considered as the evolution equation of amorphous thin film growth in one- and in two-dimensions. The role of the nonlinear term and the properties of the solutions are investigated …
Synthetic Aperture Radar on the Jetson TX1
Researchers at Peter the Great St. Petersburg Polytechnic University have implemented a synthetic aperture radar processing on the Jetson TX1 Platform using ArrayFire as described in this paper. The paper introduces SAR as “a remote sensing technique producing high-resolution radar images of the Earth’s surface. SAR technology allows obtaining wide swath radar images of objects at a considerable distance regardless of the weather and lighting conditions. It can be used by unmanned aerial vehicles and space satellites. Thus, SAR technology allows solving various problems, such as: detecting small objects (vehicles, airplanes, ships), assessing the state of railways, airfields, seaports, mapping an area, assisting in geological exploration, mapping vegetation, detecting oil spills and pollution as well as many other tasks.” The …
Case Study: A Fortune 300 Financial Company
A Fortune 300 Financial Company located in the North East USA ported their CPU code (C/C++) to CUDA and this enabled them to speed up the necessary financial calculations. Their primary objective was to reduce the time taken to run this code. Before porting to CUDA, they required ten to twelve hours to run the entire code. After porting to CUDA, they were able to do the same work in about 30 minutes. The Client has several C/C++ programmers in their team and they trained many of them to use CUDA. Their code used CUDA to speed up a calculation using Monte Carlo methods to analyze various scenarios in their hedge-fund projection system (HPS). The major portion of their calculations was …