In case you missed it, we recently held a webinar on the ArrayFire GPU Computing Library and its applications to Defense and Intelligence functions. Defense projects often have hard deadlines and definite speed targets, and ArrayFire is a fast and easy-to-use choice for these applications. This webinar was part of an ongoing series of webinars that will help you learn more about the many applications of Jacket and ArrayFire, while interacting with AccelerEyes GPU computing experts. John Melonakos, our CEO, introduced ArrayFire and talked about some exciting recent customer successes in the field of defense. He then ran through the mechanics of compiling and running code on a machine with 2 Quadro 6000 GPUs, and talked about customer success stories. …
ArrayFire for Financial Computing Applications
In case you missed it, we recently held a webinar on how to accelerate financial computing applications using Jacket. The performance advantages brought to financial computing algorithms through Jacket and GPUs represents the best way to accelerate MATLAB® code. This webinar was part of an ongoing series of webinars that will help you learn more about the many applications of Jacket and ArrayFire, while interacting with AccelerEyes GPU computing experts. Scott Blakeslee, our Director of Business Development, introduced Jacket and talked about some exciting recent customer successes in the field of financial computing. Gallagher Pryor, CTO of AccelerEyes, then demoed some financial code speedups on one of our office machines. The major takeaway from the webinar video was that Jacket is …
CUDA and OpenCL Benchmarks – Keeneland Workshop Day 1
Today was Day 1 of the Keeneland Workshop. Many great talks were given, across a broad range of GPU computing topics. With last week’s ArrayFire Webinar fresh in mind, it was interesting to see similar conclusions drawn in a presentation by Kyle Spafford of Oak Ridge National Laboratory. Kyle independently ran a number of benchmarks over a period of time which show how quickly OpenCL has matured and where it yet has room for improvement. The slide below comes from Kyle’s presentation. For numbers >1, CUDA is faster. For numbers <1, OpenCL is faster. Performance in most cases is close to equivalent. Just as we showed in the ArrayFire webinar, OpenCL performance is quite comparable with CUDA performance. The Achilles heel …
OpenCL vs CUDA Comparisons
In case you missed it, we recently held an ArrayFire Webinar, focused on exploring the tradeoffs of OpenCL vs CUDA. This webinar is part of an ongoing series of webinars held each month to present new GPU software topics as well as programming techniques with Jacket and ArrayFire. For those of you who missed it, we provide a recap here. Lots of questions were fielded by our team, so it’s a must-watch. We hope to see you at the next one! Recap Download the slides. Here is a transcript of the content portion of the webinar: AccelerEyes is pleased to present today’s ArrayFire webinar looking at OpenCL and CUDA Trade-offs and Comparisons. Everyday, we interact with many programmers in various stages of GPU …
ArrayFire for Medical Image Segmentation
In case you missed it, we recently held a webinar on how to accelerate common medical imaging applications using an easy, powerful programming library with Jacket for MATLAB®. This webinar was part of an ongoing series of webinars that will help you learn more about the many applications of Jacket and ArrayFire, while interacting with AccelerEyes GPU computing experts. Gallagher Pryor, CTO of AccelerEyes, used the Bayesian Image Segmentation algorithm as a simple use-case to show how easy it is to convert CPU code to GPU code with Jacket (only 4 lines of CPU code needed to be changed!). For those of you who missed it, we uploaded the webinar on Youtube. We hope to see you at the next one!
AccelerEyes Webinar Series
AccelerEyes invites you to participate in series of webinars designed to help you learn more about Jacket for MATLAB® and ArrayFire for C/C++/Fortran/Python, a comprehensive library of GPU-accelerated functions. GPU Programming for Medical Image Segmentation: January 18, 2012 at 3:00 p.m. EST There’s a huge volume of data generated using acquisition modalities like computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography or nuclear medicine. A common need is to manipulate and transmit this data using compression techniques in as little time as possible. During this webinar we will show Jacket’s superior speed and handling volumes from subscripting to convolutions. Come and learn how to accelerate common medical imaging applications using an easy, powerful programming library with Jacket for MATLAB®. OpenCL and CUDA Trade-Offs and Comparison: February 15, 2012 at …
AccelerEyes Webinar Series
AccelerEyes invites you to participate in series of webinars designed to help you learn more about Jacket for MATLAB® and LibJacket for C/C++/Fortran/Python, a comprehensive library of GPU-accelerated functions. Joint Webinar With NVIDIA: LibJacket CUDA Library On October 20th we co-hosted a joint webinar with NVIDIA. During this well-attended event, our GPU computing experts provided a general product overview and usage of the LibJacket CUDA library. Several impressive demos of LibJacket in action were provided as well. LibJacket supports hundreds of GPU computing functions and programmers in numerous industries have been able to speedup applications. Be sure to check out the Q&A session included in the recorded webinar posted on NVIDIA’s Developer Zone. Thanks again to NVIDIA for co-hosting this informative webinar! GPU Programming for …
Computer Vision Demos at SC’10 with 8-GPU Colfax CXT8000
We just returned from SC’10, the biggest supercomputing show of the year. At the show, we demoed Jacket driving computer vision demos on an 8-GPU Colfax CXT8000 system… pure eye candy! We had CPU and GPU versions of the demos running on 8 different monitors, each attached to the 8 Tesla C2050 GPUs in the system. Input data for the various demos was sourced from 3 webcams and 2 Blu-ray video inputs. Checkout the demo details, below: Demo 1 Sobel edge detection with image dilation and interpolation overlaid on Blu-ray video in realtime. Demo 2 Feature detection on a 4-level pyramid of 640×480 realtime webcam video. Demo 3 Gradient descent feature tracking , a stripped down version of KLT, tracking …
GPU Giddy – Excitement Building for GTC
GTC is coming up… The GPU Technology Conference (GTC) starts later this month and is sure to generate a new level of excitement and energy around GPU computing. The conference includes over 250 technology sessions presented by industry, government, and academic technology leaders. AccelerEyes is pleased to be well represented at this year’s conference by our technical leadership and a number of our customers. If you plan to attend the conference be sure to include the sessions outlined below on your agenda. In addition to being well represented, we are also flattered to see that others in the market have recognized that GPU Computing with MATLAB delivers clear productivity gains and that the performance improvements made possible by GPUs is …
Median Filtering: CUDA tips and tricks
Last week we posted a video recording from NVIDIA’s GTC09 conference. In the video, I walked through median filtering, presenting the vanilla implementation and then walking through progressive CUDA optimizations. A comment on that post suggested trying some other compiler flags, and it sparked a new series of experiments. In the original video, we started with a vanilla CPU implementation of 3×3 median filtering. We then ported this to the GPU to realize some immediate gains, but then we started a string of optimizations to see how far we could drive up performance: switching to textured memory, switching to shared memory, switching the internal sorting of pixels, etc. The conclusion: pay attention to the resource usage reported by nvcc (registers, …