Graphics Updates in ArrayFire v3.4

Pradeep GarigipatiAnnouncements, ArrayFire, OpenGL Leave a Comment

This post outlines the new graphics features available in ArrayFire v3.4:  Vector Fields, Overlays We have added visualization support to render ArrayFire array objects as vector fields. An example of how to visualize vector fields is included in ArrayFire v3.4. A screenshot of this example’s output in multi-view mode is shown below, showcasing both static and dynamic vector field rendering. Previously, each graph (such as plot, hist, scatter, etc) was rendered in its own window (or view). Overlaying graphs was not supported. ArrayFire v3.4 now support graph overlays. Each draw call in ArrayFire is either rendered to a whole window (single view) or to a view, which is a portion of the screen obtained in multiview mode. The following image is an example of a …

Conway’s Game of Life using ArrayFire

Shehzan MohammedArrayFire, CUDA, Image Processing, Open Source, OpenGL 4 Comments

Conway’s Game of Life is a popular zero player cellular automaton devised by the John Horton Conway in 1970. The game makes for a fun evolution as the player sets the initial condition and then observes the evolution of the game. Each cell has 2 states: live or dead. There are 4 simple rules that determine this: Any live cell with fewer than two live neighbours dies, as if caused by under-population. Any live cell with two or three live neighbours lives on to the next generation. Any live cell with more than three live neighbours dies, as if by overcrowding. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction. From a programmer’s …

Remote Off-Screen Rendering with OpenGL

Shehzan MohammedArrayFire, OpenGL 18 Comments

At ArrayFire, we constantly encounter projects that require OpenGL and run on a remote server that does not have a display. In this blog, we have compiled a list of steps that users can use to run full profile OpenGL applications over SSH on remote systems without a display. A few notes before we get started. This blog is limited to computers running distributions of Linux. The first part of the blog that shows the configuration of the xorg.conf file is limited to NVIDIA cards (with display). AMD cards support this capability without the modification of xorg.conf file. However, we have not been able to get a comprehensive list of supported devices. Requirements You will need access to the remote …

Open Source Initiatives from ArrayFire

Pavan YalamanchiliAnnouncements, ArrayFire, CUDA, Fortran, Java, Open Source, OpenCL, OpenGL, R Leave a Comment

At ArrayFire we like to use a lot of Free/Open Source software. We use various Linux distributions, Jenkins, Gitlab, gcc, emacs, vim and numerous other FOSS tools on a daily basis. We also love the idea of developing software collaboratively and openly. Last year we started working with AMD on CL Math Libraries. Internally we’ve had numerous discussions about contributing to the GPGPU community. However, it’s neither simple nor straightforward to take a closed software Open Source. Earlier this year, we decided to take the first step and Open Source all of the ArrayFire library’s  tertiary projects. This includes all of our ArrayFire library’s language wrappers, examples, and source code used for our blog posts. All of our projects are hosted at our …

ArrayFire-OpenGL Interop using CUDA

Shehzan MohammedArrayFire, CUDA, OpenGL Leave a Comment

A lot of ArrayFire users have been interested in the usage of ArrayFire in partnership with OpenGL for graphics computation. In the long run, we do plan to expand further on the interoperablilty and make it easier through ArrayFire. For now, we have developed a small example to expand on the usage of the CUDA-OpenGL interop API to assist in the interop operations between ArrayFire and OpenGL. Some of the advantage of direct ArrayFire-OpenGL interop are: Faster data transfers: Since the OpenGL buffers as well as ArrayFire data reside on the GPU, we can use a direct device to device copy rather than using the CPU as an intermediate and the relatively slow PCIe interface. Offscreen rendering: It is commonly …