Getting Started with OpenCL on Android

Pradeep GarigipatiAndroid, Java, OpenCL 12 Comments

Mobile devices are carving their niche into the world of computing with more processing power day by day. GPUs on mobile devices have been around for a while, but using them for accelerating computation is still quite new. Until recently, the only way to access the GPU was through OpenGL. Around december 2008, Khronos released OpenCL, a generic API for accelerating non-graphics tasks. OpenCL enables us to take advantage of acceleration hardware. Since it is an open standard, many hardware vendors provide support on their devices. With the recent release of Adreno and Mali SDKs, you can now run OpenCL code on mobile GPUs. Today’s post is going to be about how to do image processing on camera feed on …

Joint Webinar with AMD: An Introduction to OpenCL Libraries

ScottAnnouncements, ArrayFire, Events, OpenCL Leave a Comment

Back by popular demand! You’re invited to join us for a second webinar held jointly with AMD to discuss productive OpenCL Programming – An Introduction to OpenCL Libraries. We had so many people attend the first one, we decided to hold a second webinar! The webinar will be held on Monday, May 19 at 9 am PT / 11 am CT / 12 pm ET. Join ArrayFire COO Oded Green as he demonstrates best practices to help you quickly get started with OpenCL programming.  Learn how to get the best performance from AMD hardware in various programming languages using the ArrayFire library. Oded will discuss the latest advancements in the OpenCL ecosystem, including cutting edge OpenCL libraries such as clBLAS, clFFT, clMAGMA and ArrayFire. …

Open Source Initiatives from ArrayFire

Pavan YalamanchiliAnnouncements, ArrayFire, CUDA, Fortran, Java, Open Source, OpenCL, OpenGL, R Leave a Comment

At ArrayFire we like to use a lot of Free/Open Source software. We use various Linux distributions, Jenkins, Gitlab, gcc, emacs, vim and numerous other FOSS tools on a daily basis. We also love the idea of developing software collaboratively and openly. Last year we started working with AMD on CL Math Libraries. Internally we’ve had numerous discussions about contributing to the GPGPU community. However, it’s neither simple nor straightforward to take a closed software Open Source. Earlier this year, we decided to take the first step and Open Source all of the ArrayFire library’s  tertiary projects. This includes all of our ArrayFire library’s language wrappers, examples, and source code used for our blog posts. All of our projects are hosted at our …

How to Make GPU Hardware Decisions

ScottComputing Trends, CUDA, Hardware & Infrastructure, OpenCL Leave a Comment

We get questions all the time about how to make GPU hardware decisions. We’ve seen just about every scenario you can imagine, and so we always jump at the chance to help others through this decision process. Here’s a recent question from a customer. “I’ve just found your post on Analytic Bridge and have taken a look at your website … I’m replacing my two Tesla M1060 cards (computing capability too low) and I’m considering used Tesla M2070s or the new GTX 760 cards. Could you offer any insight? I believe the GTX 760 cards may well outperform the older 2070s and are much cheaper.” And here’s our response. “The GTX 760 will probably outperform the M2070 for single precision …

ArrayFire v2.1 Official Release

Aaron TaylorAnnouncements, ArrayFire, CUDA, OpenCL Leave a Comment

It’s that time again—we’re pleased to announce the release of our newest version of ArrayFire: ArrayFire v2.1. ArrayFire v2.1 is now bigger, faster, and stronger, thanks to some key function additions, API changes, feature improvements, and bug fixes. ArrayFire is a CUDA and OpenCL library designed for maximum speed without the hassle of writing time-consuming CUDA and OpenCL device code.  With ArrayFire’s library functions, developers can maximize productivity and performance. Each of ArrayFire’s functions has been hand-tuned by CUDA and OpenCL experts. Major Updates Support for CUDA 6.0 Support for Mac OS X New language support (available on github)       ArrayFire for Java       ArrayFire for R!       ArrayFire for Fortran* ArrayFire Extras on Github       All language wrappers       …

ArrayFire-OpenGL Interop using CUDA

Shehzan MohammedArrayFire, CUDA, OpenGL Leave a Comment

A lot of ArrayFire users have been interested in the usage of ArrayFire in partnership with OpenGL for graphics computation. In the long run, we do plan to expand further on the interoperablilty and make it easier through ArrayFire. For now, we have developed a small example to expand on the usage of the CUDA-OpenGL interop API to assist in the interop operations between ArrayFire and OpenGL. Some of the advantage of direct ArrayFire-OpenGL interop are: Faster data transfers: Since the OpenGL buffers as well as ArrayFire data reside on the GPU, we can use a direct device to device copy rather than using the CPU as an intermediate and the relatively slow PCIe interface. Offscreen rendering: It is commonly …

ArrayFire v2.0 Official Release

ScottAnnouncements, ArrayFire, CUDA, OpenCL 1 Comment

We are thrilled to announce the official release ArrayFire v2.0, our biggest and best product ever! ArrayFire v2.0 adds full commercial support for OpenCL devices including all AMD APUs and AMD FireProTM graphics, CUDA GPUs from NVIDIA, and other OpenCL devices from Imagination, Freescale, ARM, Intel, and Apple. ArrayFire is a CUDA and OpenCL library designed for maximum speed without the hassle of writing time-consuming CUDA and OpenCL device code.  With ArrayFire’s library functions, developers can maximize productivity and performance. Each of ArrayFire’s functions has been hand-tuned by CUDA and OpenCL experts. Announcing ArrayFire for OpenCL Support for all of ArrayFire’s function library (with a few exceptions) Same API as ArrayFire for CUDA enabling seamless interoperability Just-In-Time (JIT) compilation of …

ARM Showcases ArrayFire OpenCL Support for Mali GPU at Supercomputing ’13

ScottArrayFire, Events, OpenCL Leave a Comment

ARM showcased ArrayFire support for the Mali GPU at the Supercomputing ’13 conference recently held in Denver.  This exciting development caught the attention of many attendees as they viewed the ArrayFire demos running in the ARM and AccelerEyes exhibits.   Energy budgets are always constrained, and form an expensive component of any HPC system. ARM Mali GPUs provide the best performance and throughput for a given energy envelope. Partnering with ARM, AccelerEyes further reduces the cost of HPC by minimizing development time and costs. AccelerEyes offers the most productive software solutions for accelerating code using GPUs, coprocessors, and OpenCL devices.  AccelerEyes delivers ArrayFire to accelerate C, C++, and Fortran codes on CUDA and OpenCL devices.  ArrayFire customers come from a wide range …

Photos from SC13

John MelonakosArrayFire, CUDA, Events, OpenCL Leave a Comment

SC13 was awesome this week! Tomorrow is the last day of the exhibition. For those of you that did not make it to the show, here are some pictures from our exhibit: The AccelerEyes Booth ——————————————————————————————————– ArrayFire OpenCL Demo on ARM Mali ——————————————————————————————————– ArrayFire CUDA Demo on NVIDIA K40 ——————————————————————————————————– ArrayFire OpenCL Demo on Intel Xeon Phi Coprocessor ——————————————————————————————————– ArrayFire OpenCL Demo on AMD FirePro GPU ——————————————————————————————————– It was a great show and wonderful to see so many ArrayFire users in person. If you could not attend and would like to learn more about our CUDA or OpenCL products or services, let us know! Related articles ArrayFire v2.0 Release Candidate Now Available for Download Two Kinds of Exhibits to Watch …

APU 2013 – Day 3 Recap

John MelonakosComputing Trends, Events, OpenCL Leave a Comment

Big announcement here at #APU13! AMD CTO, Mark Papermaster, just announced 2 additions to the 2014 Mobile APU roadmap http://t.co/sWHMhb9AAe — AMD (@AMD) November 13, 2013 Today was the final day of AMD’s APU 2013 conference. The theme of today was mostly focused on gaming topics, so it was not as relevant to technical computing as yesterday. However, the mobile product announcement from AMD in the tweet above was interesting. OpenCL is just as important in mobile computing as it is in HPC computing. Both ends of the spectrum have a need for speed and can achieve it through great data parallelism. AMD is looking to make better inroads into mobile computing with these APU announcements. Overall, APU 2013 was a fantastic …