I am AI at NVIDIA & ArrayFire

John MelonakosAI, ArrayFire, Events Leave a Comment

I am an explorer.I am a helper.I am a healer.I am a visionary.I am a builder.I am even the narrator of the story you are watching.And the composer of the music.I am AI. These words are from the first 3:11 min of Jensen’s keynote today. Yesterday was another amazing NVIDIA GTC kicking off. Fully remote due to coronavirus, I still enjoyed the content without the travel. I encourage you to watch the video below. A masterpiece. ArrayFire has participated and exhibited at every in-person NVIDIA GTC, ever since the 2008 NVIDIA NVISION conference, click the link for a nice flashback. NVIDIA has come a long way from that 0:37 clip and the 3:11 clip Jensen showed above. At NVISION, we …

Thrombotherm: Analyzing Blood Platelets with ArrayFire

John MelonakosArrayFire, Case Studies, Image Processing Leave a Comment

The Thrombotherm project by Catalysts is developing a method to analyze blood platelets by means of cell microscopy in real time and to classify them according to their activation state. ArrayFire enabled faster overall research project times and real-time analysis on video data. This project represents an enormous extension of thrombocyte diagnotics, especially through significantly accelerated analysis times. Faster analyses enabled university research collaborators from the University of Applied Sciences OÖ and the Ludwig Boltzmann Institute to shorten research project times. The project has three main parts: Detect cell morphology in real-time Thombotherm makes it possible to mathematically determine and categorize the cell boundaries by means of transmitted light microscopy. The software distinguishes between “fried-egg”-shaped cells and “spider”-shaped cells. This is used …

ArrayFire v3.4 Official Release

John MelonakosArrayFire Leave a Comment

Today we are pleased to announce the release of ArrayFire v3.4, our open source library of parallel computing functions supporting CUDA, OpenCL, and CPU devices. This new version of ArrayFire improves features and performance for applications in machine learning, computer vision, signal processing, statistics, finance, and more. This release focuses on 5 major components of the library that are common to many areas of mathematical, scientific, and financial computing:  sparse matrix operations, random number generation, image processing, just-in-time (JIT) compilation, and visualizations. Sparse Matrix and BLAS (see blog post) Support for CSR and COO storage types Sparse-Dense Matrix Multiplication and Matrix-Vector Multiplication Conversion to and from dense matrix to CSR and COO storage types Support for Random Number Generator Engines (see blog post) Philox Threefry Mersenne Twister Image Processing (see blog post) …

Partners Magnify the SC13 Experience

John MelonakosArrayFire, Events 1 Comment

Yesterday, we posted photos from our exhibit. Today was the last day of SC13, and we want to tip our hat to the wonderful partners that magnified our SC13 experience. Creative Consultants, Mellanox, and Allinea Creative Consultants ran an ArrayFire demo across several nodes using Mellanox interconnect. The demo was a multi-node, multi-GPU lattice boltzmann simulation. Allinea also showcased their debugging and profiling tools on the same ArrayFire based code. AMD ArrayFire OpenCL demos were showcased in the AMD exhibit. It was great to see momentum from AMD at SC13 carried over from the previous week’s APU13 conference. Microway In the photo below, you can see ArrayFire running on Microway’s WhisperStation. Microway had prime real estate at the conference and surely every …

Photos from SC13

John MelonakosArrayFire, CUDA, Events, OpenCL Leave a Comment

SC13 was awesome this week! Tomorrow is the last day of the exhibition. For those of you that did not make it to the show, here are some pictures from our exhibit: The AccelerEyes Booth ——————————————————————————————————– ArrayFire OpenCL Demo on ARM Mali ——————————————————————————————————– ArrayFire CUDA Demo on NVIDIA K40 ——————————————————————————————————– ArrayFire OpenCL Demo on Intel Xeon Phi Coprocessor ——————————————————————————————————– ArrayFire OpenCL Demo on AMD FirePro GPU ——————————————————————————————————– It was a great show and wonderful to see so many ArrayFire users in person. If you could not attend and would like to learn more about our CUDA or OpenCL products or services, let us know! Related articles ArrayFire v2.0 Release Candidate Now Available for Download Two Kinds of Exhibits to Watch …

APU 2013 – Day 3 Recap

John MelonakosComputing Trends, Events, OpenCL Leave a Comment

Big announcement here at #APU13! AMD CTO, Mark Papermaster, just announced 2 additions to the 2014 Mobile APU roadmap http://t.co/sWHMhb9AAe — AMD (@AMD) November 13, 2013 Today was the final day of AMD’s APU 2013 conference. The theme of today was mostly focused on gaming topics, so it was not as relevant to technical computing as yesterday. However, the mobile product announcement from AMD in the tweet above was interesting. OpenCL is just as important in mobile computing as it is in HPC computing. Both ends of the spectrum have a need for speed and can achieve it through great data parallelism. AMD is looking to make better inroads into mobile computing with these APU announcements. Overall, APU 2013 was a fantastic …

APU 2013 – Day 2 Recap

John MelonakosComputing Trends, Events, OpenCL 1 Comment

Today was the first full day of AMD’s APU 2013 conference. It was a whirlwind of heterogeneous computing. From the morning keynotes, three particular salient points stuck out to us: Mike Muller, CTO at ARM, talked about heterogeneous computing. He said it nicely with, “Heterogeneous computing is the future. It has also been our past, but we didn’t notice because a few shiny companies overshadowed everything else.” That is a great way to describe it. The future of heterogeneous computing involves the rise in importance of non-x86 processors. Throwing a few more MHz onto a CPU no longer is capable of satiating computational demands. Nandini Ramani, VP at Oracle, talked about the importance of Java for heterogeneous computing. She pointed …

APU 2013 – Day 1 Recap

John MelonakosEvents, OpenCL Leave a Comment

AMD’s APU 2013 kicked off today with keynotes and a welcome reception. The developer summit is themed as the epicenter of heterogeneous computing. AMD has a world class CPU and a world class GPU and is pushing the industry forward by combining both of those devices into the same chip, the APU. AMD’s APUs are programmable via OpenCL, the industry standard for heterogeneous development. AMD is also leading the way with standards for Heterogeneous System Architecture (HSA). APU13 will have many technical sessions, keynotes, and demos around OpenCL and HSA. We are at the APU conference demoing ArrayFire acceleration on two of AMD’s newest hardware offerings: A machine with the latest AMD Radeon R9 209X discrete GPU A machine with the …

Application Time vs Solver Time

John MelonakosArrayFire, Computing Trends Leave a Comment

Last week, HPCwire ran an interesting article entitled, “Where has HPC’s math gone?” The article analyzes the increasing importance of math solvers to successful HPC outcomes. As the number of cores grows, the percentage of time HPC codes spend in solvers increases significantly. The following chart illustrates this trend nicely:   ArrayFire is ideally suited for HPC applications that need to accelerate the toughest math problems. ArrayFire contains hundreds of math functions across numerous domains. In general, if the HPC community really wants to solve this problem, it will begin to invest more in libraries than in compilers that have no chance at optimizing these tough math problems automatically. Rather, it is only through expertly-tuned codes, such as those developed …

ISC 2013 Keynote by Stephen Pawlowski of Intel

John MelonakosComputing Trends, Events Leave a Comment

Stephen Pawlowski of Intel gave an interesting keynote today at ISC 2013. He continued the theme of yesterday’s keynote to address challenges our market faces in getting to exascale computing. Here is a summary of the points he made during his talk: Getting to exascale by 2020 requires performance improvement of 2x every year Innovations anticipated include stacked chips and optical layers DRAM is not scaling with Moore’s Law More power goes into transferring data than in computing Need to operate transistors near threshold New materials for DRAM needed. Resistive memory could replace DRAM. Need to explore both the big die and the small die paths as we approach 2020 Big die path leads to 10 billion transistors on a …